Matematik ve Bilgisayar Bilimleri Bölümü Öğrencilerine Ait Bilgi Formu İçin Tıklayınız.
Matematik ve Bilgisayar Bilimleri Bölümü İle İlgili Duyuruları Öğrenmek İçin Tıklayınız.
Eskişehir Osmangazi Üniversitesi Öğrenci Bilgi Sistemi İçin Öğrenci Girişi - Öğretim Üyesi Girişi
Projeler grup olarak yapılacak ise herhangi bir öğrencinin bilgileri ile sisteme girmek yeterli olacaktır.
2023-2024 öğretim yılı "Görsel Programlama II" dersi için proje konusunu "Projeler-Ödevler İçin Tıklayınız" bağlantısını kullanarak iletebilirsiniz.

1. B. Saka, “A Quartic B-spline Collocation Method for Solving the Nonlinear Schrödinger Equation”, Appl. Comput. Math., 14, 1, 75-86, 2015.

2. B. Saka, “A Quintic B-spline Finite Element Method for Solving the Nonlinear Schrödinger Equation”, Phys. Wave Phenom., 20, 2, 107-117, 2012, DOI: 10.3103/S1541308X12020033.

3. B. Saka, A. Şahin and İ. Dağ "B-spline Collocation Algorithms for Numerical Solution of the RLW Equation", Numer. Meth. Part. D. E., 27, 581–607, 2011, DOI 10.1002/num.20540.

4. İ. Dağ, A. Korkmaz and B. Saka, “Cosine Expansion Based Differential Quadrature Algorithm for Numerical Solution of the RLW Equation”, Numer. Meth. Part. D. E., 26, 3, 544-560, 2010.

5. B. Saka and İ. Dağ, “Quartic B-spline Galerkin Approach to the Numerical Solution of the KdVB Equation”, Appl. Math. Comput., 215, 2, 746–758, 2009.

6. B. Saka, “Cosine Expansion Based Differential Quadrature Algorithm for Numerical Solution of the KdV Equation”, Chaos Soliton Fract., 40, 5, 2181-2190, 2009.

7. B. Saka, İ. Dağ and D. Irk, “Quintic B-spline Collocation Method for Numerical Solutions of the RLW Equation”, Anziam J., 49, 3, 389-410, 2008.

8. B. Saka, İ. Dağ, Y. Dereli and A. Korkmaz, "Three Different Methods for Numerical Solution of the EW Equation", Engrg. Anal. Boundary Elem., 32, 7, 556-566, 2008.

9. B. Saka and İ. Dağ, "A Numerical Study of Burgers' Equation", J. Franklin I., 345, 4, 328-348, 2008.

10. İ. Dağ, A. Şahin and B. Saka, "A B-spline algorithm for the numerical solution of Fisher's Equation", Kybernetes, 37, 2, 326-342, 2008.

11. B. Saka and İ. Dağ, “A Numerical Solution of the RLW Equation by Galerkin Method Using Quartic B-splines”, Commun. Numer. Meth. Engng., 24, 1339-1361, 2008.

12. B. Saka, “Algorithms for Numerical Solution of the Modified Equal Width Wave Equation Using Collocation Method”, Math. Comput. Model., 45, 9-10, 1096-1117, 2007.

13. B. Saka and İ. Dağ, "Quartic B-spline Collocation Algorithms for Numerical Solution of the RLW Equation", Numer. Meth. Part. D. E., 23, 3, 731-751, 2007.

14. B. Saka and İ. Dağ, "Quartic B-spline Collocation Method to the Numerical Solutions of the Burgers' Equation", Chaos Soliton Fract., 32, 3, 1125-1137, 2007.

15. B. Saka, “A Finite Element Method for Equal Width Equation”, Appl. Math. Comput., 175, 730-747, 2006.

16. D. Irk, İ. Dağ and B. Saka, “A Small Time Solutions for the Korteweg-de Vries Equation Using Spline Approximation”, Appl. Math. Comput., 173, 834-846, 2006.

17. İ. Dağ, B. Saka and D. Irk, “Galerkin Method for the Numerical Solution of the RLW Equation Using Quintic B-splines”, J. Comput. Appl. Math., 190, 532-547, 2006.

18. İ. Dağ, B. Saka and A. Boz, “B-spline Galerkin Methods for Numerical Solutions of the Burgers’ Equation”, Appl. Math. Comput., 166, 506-522, 2005.

19. İ. Dağ, D. Irk and B. Saka, “A Numerical Solution of the Burgers’ Equation using Cubic B-splines”, Appl. Math. Comput., 163, 199-211, 2005.

20. B. Saka and İ. Dağ, “A Collocation Method for the Numerical Solution of the RLW Equation Using Cubic B-spline Basis”, Arab. J. Sci. Eng., 30, 39-50, 2005.

21. İ. Dağ, B. Saka and D. Irk, “Application of Cubic B-splines for Numerical Solution of the RLW Equation”, Appl. Math. Comput., 159, 373-389, 2004.

22. B. Saka, İ. Dağ and A. Doğan, “Galerkin Method for the Numerical Solution of the RLW Equation Using Quadratic B-splines”, Int. J. Comput. Math., 81, 727-739, 2004.

23. İ. Dağ, A. Doğan and B. Saka, “B-spline Collocation Methods for Numerical Solutions of the RLW Equation”, Int. J. Comput. Math., 80, 743-757, 2003.

1. B. Saka, İ. Dağ and D. Irk, "Numerical Solutions of the modified Burgers' Equation by the Quintic B-spline Galerkin Finite Element Method", Int. J. Math. Stat., 1, 86-97, 2007.

2. İ. Dağ and B. Saka, “A Cubic B-spline Collocation Method for the EW Equation”, Mathematical and Computational Applications, 9, 381-392, 2004.

3. B. Saka, D. Irk and İ. Dağ, “A Numerical Study of the Equal Width Equation”, Hadronic Journal Supplement, 18, 99-115, 2003.

4. B. Saka, “Finite Difference Methods for Numerical Solutions of the RLW Equation”, Pure and Applied Mathematika Sciences, LVIII, 43-52, 2003.

5. D. Irk, B. Saka and İ. Dağ, “Cubic Spline Collocation Method for the Equal Width Equation”, Hadronic Journal Supplement, 18, 201-214, 2003.

1. B. Saka and D. Irk, “Burger Denkleminin Sayısal Çözümleri İçin Sonlu Fark Metotları”, Dumlupınar Üni. Fen-Bilimleri Dergisi, 5, 87-96, 2003.

1. B. Saka and İ. Dağ, “A Septic B-spline Finite Element Method for Solving the Nonlinear Schrödinger Equation”, International Eurasian Conference on Mathematical Sciences and Applications, 25-28 August 2014, Vienna, Austria.

2. B. Saka and İ. Dağ, “A Sextic B-spline Finite Element Method for Solving the Nonlinear Schrödinger Equation”, Karatekin Mathematics Days, International Mathematics Symposium, 11-13 June, 2014, Çankırı, Turkey.

3. İ. Dağ, B. Saka and A. Boz, “Quintic B-spline Galerkin Method for Numerical Solutions of the Burgers’ Equation”, Dynamical Systems and Applications, Proceedings, 295-309, 2004, Antalya, Turkey.

1. B. Saka and S. Ülker, “A Cubic B-spline Galerkin Method for Solving the Nonlinear Schrödinger Equation”, 14. Matematik Sempozyumu, Niğde, 2015.

2. B. Saka and M. Zorşahin, “A Cubic B-spline Algorithm for Numerical Solution of the KdVB equation”, 14. Matematik Sempozyumu, Erzurum, Niğde, 2015.

3. B. Saka and İ. Dağ, “Kuintik B-spline Galerkin metodu ile KdV denkleminin sayısal çözümü”, XX. Ulusal Matematik Sempozyumu, Erzurum, 2007.




Sayfam 722761 Kez Ziyaret Edilmiştir.
Online Ziyaretçi Sayısı: 24